domingo, 25 de agosto de 2013

Enzimas

ENZIMAS

son moléculas de naturaleza proteica y estructural que catalizan reacciones químicas, siempre que sean termodinámicamente posibles: una enzima hace que una reacción química que es energéticamente posible (ver Energía libre de Gibbs), pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima.En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.

Estructura de la triosafosfato isomerasa. Conformación en forma de diagrama de cintas rodeado por el modelo de relleno de espacio de la proteína. Esta proteína es una eficiente enzima involucrada en el proceso de transformación deazúcares en energía en las células.

Son moléculas de naturaleza proteica y estructural que catalizan reacciones químicas, siempre que seantermodinámicamente posibles: una enzima hace que una reacción química que es energéticamente posible (ver Energía libre de Gibbs), pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima.2 3 En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.

CLASIFICACIÓN
  • OXIDORREDUCTASAS
Catalizan reacciones de oxidorreducción, es decir, transferencia de hidrógeno (H) 
o electrones (e-) de un sustrato a otro, según la reacción general:
AH2 + B
A + BH2
Ared + Box
Aox + Bred
Ejemplos son la succinato deshidrogenasa o la citocromo c oxidasa.











  • TRANSFERASAS
Catalizan la transferencia de un grupo químico (distinto del hidrógeno) de un sustrato a 
otro, según la reacción:
A-B + C
A + C-B
Un ejemplo es la glucoquinasa, que cataliza la reacción representada en la Figura de la 
derecha:
glucosa + ATP
ADP + glucosa-6-fosfato





  • HIDROLASAS
Catalizan las reacciones de hidrólisis:
A-B + H2O
AH + B-OH
Un ejemplo es la lactasa, que cataliza la reacción:
lactosa + agua
glucosa + galactosa




  • LIASAS

Catalizan reacciones de ruptura o soldadura de sustratos:
A-B
A + B
Un ejemplo es la acetacetato descarboxilasa, que cataliza la 
reacción:
ácido acetacético
CO2 + acetona

  • ISOMERASAS

Catalizan la interconversión de isómeros:
A
B
Son ejemplos la fosfotriosa isomerasa y la fosfoglucosa isomerasa, que catalizan las 
reacciones representadas en la tabla inferior:
fosfotriosa isomerasa
fosfoglucosa isomerasa
gliceraldehído-3-fosfato
dihidroxiacetona-
fosfato
glucosa-6-fosfato
fructosa-6-fosfato

CINÉTICA ENZIMÁTICA


Mecanismo para una reacción catalizada por una enzima con un único sustrato. La enzima (E) une un sustrato (S) y genera un producto (P).
La cinética enzimática es el estudio de cómo las enzimas se unen a sus sustratos y los transforman en productos. Los datos de equilibrios utilizados en los estudios cinéticos son obtenidos mediante ensayos enzimáticos.
En 1902, Victor Henri propuso una teoría cuantitativa sobre la cinética enzimática, pero sus datos experimentales no fueron muy útiles debido a que la importancia de la concentración del ion de hidrógeno aún no era considerada. Después de que Peter Lauritz Sørensendefiniera la escala logarítmica del pH e introdujera el concepto de "tampón" (buffer) en 1909, el químico alemán Leonor Michaelis y su postdoctoral canadiense Maud Leonora Menten repitieron los experimentos de Henri confirmando su ecuación, que actualmente es conocida como cinética de Henri-Michaelis-Menten (o simplemente cinética de Michaelis-Menten). Su trabajo fue desarrollado más en profundidad por George Edward Briggs y J. B. S. Haldane, quienes obtuvieron las ecuaciones cinéticas que se encuentran tan ampliamente extendidas en la actualidad.
La mayor contribución de Henri fue la idea de dividir las reacciones enzimáticas en dos etapas. En la primera, el sustrato se une reversiblemente a la enzima, formando el complejo enzima-sustrato (también denominado complejo Michaelis). En la segunda, la enzima cataliza la reacción y libera el producto.

Curva de saturación de una reacción enzimática donde se muestra la relación entre la concentración de sustrato y la velocidad de la reacción.
Las enzimas pueden catalizar hasta varios millones de reacciones por segundo. Por ejemplo, la descarboxilación no enzimática de laorotidina 5'-monofosfato tiene una vida media de 78 millones de años. Sin embargo, cuando la enzima orotidina 5'-fosfato descarboxilasaestá presente en el medio, ese mismo proceso tarda apenas 25 milisegundos. Las velocidades de las enzimas dependen de las condiciones de la solución y de la concentración de sustrato. Aquellas condiciones que desnaturalizan una proteína, como temperaturas elevadas, pHs extremos o altas concentraciones de sal, dificultan o impiden la actividad enzimática, mientras que elevadas concentraciones de sustrato tienden a incrementar la actividad. Para encontrar la máxima velocidad de una reacción enzimática, la concentración de sustrato se incrementa hasta que se obtiene una tasa constante de formación de producto (véase la curva de saturación representada en la figura de la derecha). La saturación ocurre porque, cuando la concentración de sustrato aumenta, disminuye la concentración de enzima libre, que se convierte en la forma con sustrato unido (ES). A la máxima velocidad (Vmax) de la enzima, todos los sitios activos de dicha enzima tienen sustrato unido, y la cantidad de complejos ES es igual a la cantidad total de enzima. Sin embargo, Vmax es sólo una de las constantes cinéticas de la enzima. La cantidad de sustrato necesario para obtener una determinada velocidad de reacción también es importante. Este parámetro viene dado por la constante de Michaelis-Menten (Km), que viene a ser la concentración de sustrato necesaria para que una enzima alcance la mitad de su velocidad máxima. Cada enzima tiene un valor de Km característico para un determinado sustrato, el cual puede decirnos cómo de afín es la unión entre el sustrato y la enzima. Otra constante útil es kcat, que es el número de moléculas de sustrato procesadas por cada sitio activo por segundo.
La eficiencia de una enzima puede ser expresada en términos de kcat/Km, en lo que se denomina constante de especificidad, que incorpora la constante de velocidad de todas las fases de la reacción. Debido a que la constante de especificidad contempla tanto la afinidad como la capacidad catalítica, es un parámetro muy útil para comparar diferentes enzimas o la misma enzima con diferentes sustratos. El valor máximo teórico de la constante de especificidad es denominado límite de difusión tiene un valor de 108-109 (M-1 s-1). Llegados a este punto, cada colisión de la enzima con su sustrato da lugar a la catálisis, con lo que la velocidad de formación de producto no se ve limitada por la velocidad de reacción, sino por la velocidad de difusión. Las enzimas que poseen esta propiedad son llamadas enzimas catalíticamente perfectas o cinéticamente perfectas. Ejemplos de este tipo de enzimas son la triosa fosfato isomerasa, la anhidrasa carbónica, la acetilcolinesterasa, la catalasa, la fumarasa, la beta-lactamasa y la superóxido dismutasa.
La cinética de Michaelis-Menten depende de la ley de acción de masas, que se deriva partiendo de los supuestos de difusión libre y colisión al azar. Sin embargo, muchos procesos bioquímicos o celulares se desvían significativamente de estas condiciones, a causa de fenómenos como el crowding macromolecular, la separación de etapas entre enzima-sustrato-producto, o los movimientos moleculares uni- o bidimensionales.No obstante, en estas situaciones se puede aplicar una cinética de Michaelis-Menten fractal.
Algunas enzimas presentan una cinética más rápida que la velocidad de difusión, lo que en principio parecería ser imposible. Se han propuesto diversos mecanismos para tratar de explicar este fenómeno. Uno de los modelos propone que algunas proteínas podrían tener la capacidad de acelerar la catálisis secuestrando el sustrato y orientándolo mediante campos eléctricos dipolares. Otro modelo propone un mecanismo de efecto túnel cuántico, donde un protón o un electrón pueden formar un túnel a través de barreras de activación, aunque existe cierta controversia en cuanto al efecto túnel que pueda generar un protón. El efecto túnel mediado por protones ha sido observado en triptamina.Esto sugiere que la catálisis enzimática podría ser definida más exactamente como una "barrera", en lugar de como hace el modelo tradicional, donde el sustrato requiere a la enzima para alcanzar una barrera energética más baja.

Termodinámica

TERMODINÁMICA

Es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperaturapresión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.

Principio cero de la termodinámica

Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.
En palabras llanas: «Si pones en contacto un objeto frío con otro caliente, ambos evolucionan hasta que sus temperaturas se igualan».
Tiene una gran importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez está dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.

Primera ley de la termodinámica

También conocida como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará.
En palabras llanas: "La energía ni se crea ni se destruye: solo se transforma".
Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta porNicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.
La ecuación general de la conservación de la energía es la siguiente:
E_{\text{entra}} - E_{\text{sale}} = \Delta E_{\text{sistema}} \,
Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:
\Delta U = Q - W \,
Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.
Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional (véase criterio de signos termodinámico).
ilustración de la segunda ley mediante una máquina térmica

Segunda ley de la termodinámica

Esta ley marca la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.
La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.
Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius

Diagrama del ciclo de Carnot en función de la presión y elvolumen.
En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».

Enunciado de Kelvin—Planck

Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, con la realización de una cantidad igual de trabajo.

Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y ésta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

Tercera ley de la termodinámica

Algunas fuentes se refieren incorrectamente al postulado de Nernst como "la tercera de las leyes de la termodinámica". Es importante reconocer que no es una noción exigida por la termodinámica clásica por lo que resulta inapropiado tratarlo de «ley», siendo incluso inconsistente con la mecánica estadística clásica y necesitando el establecimiento previo de la estadística cuántica para ser valorado adecuadamente. La mayor parte de la termodinámica no requiere la utilización de este postulado15 . El postulado de Nernst, llamado así por ser propuesto por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absolutomediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto.
Es importante remarcar que los principios o leyes de la termodinámica son válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel microscópico. La idea del demonio de Maxwell ayuda a comprender los límites de la segunda ley de la termodinámica jugando con las propiedades microscópicas de las partículas que componen un gas.

Sistema

Se puede definir un sistema como un conjunto de materia, que está limitado por una superficie, que le pone el observador, real o imaginaria. Si en el sistema no entra ni sale materia, se dice que se trata de un sistema cerrado, o sistema aislado si no hay intercambio de materia y energía, dependiendo del caso. En la naturaleza, encontrar un sistema estrictamente aislado es, por lo que sabemos, imposible, pero podemos hacer aproximaciones. Un sistema del que sale y/o entra materia, recibe el nombre de abierto. Ponemos unos ejemplos:
  • Un sistema abierto: se da cuando existe un intercambio de masa y de energía con los alrededores; es por ejemplo, un coche. Le echamos combustible y él desprende diferentes gases y calor.
  • Un sistema cerrado: se da cuando no existe un intercambio de masa con el medio circundante, sólo se puede dar un intercambio de energía; un reloj de cuerda, no introducimos ni sacamos materia de él. Solo precisa un aporte de energía que emplea para medir el tiempo.
  • Un sistema aislado: se da cuando no existe el intercambio ni de masa y energía con los alrededores; ¿Cómo encontrarlo si no podemos interactuar con él? Sin embargo un termo lleno de comida caliente es una aproximación, ya que el envase no permite el intercambio de materia e intenta impedir que la energía (calor) salga de él. El universo es un sistema aislado, ya que la variación de energía es cero  \Delta E = 0.

Medio externo

Se llama medio externo o ambiente a todo aquello que no está en el sistema pero que puede influir en él. Por ejemplo, consideremos una taza con agua, que está siendo calentada por un mechero. Consideremos un sistema formado por la taza y el agua, entonces el medio está formado por el mechero, el aire, etc.

ENTALPIA

Es una magnitud termodinámica, simbolizada con la letra H mayúscula, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, es decir, la cantidad de energía que un sistema puede intercambiar con su entorno.
En la historia de la termodinámica se han utilizado distintos términos para denotar lo que hoy conocemos como entalpía de un sistema. Originalmente se pensó que la palabra «entalpía» fue creada por Émile Clapeyron y Rudolf Clausius a través de la publicación de la relación de Clausius-Clapeyron en The Mollier Steam Tables and Diagrams de 1827, pero el primero que definió y utilizó el término entalpía fue el holandés Heike Kamerlingh Onnes, a principios del siglo XX.1
En palabras más concretas, es una función de estado de la termodinámica donde la variación permite expresar la cantidad de calor puesto en juego durante una transformación isobárica (es decir, a presión constante) en un sistema termodinámico (teniendo en cuenta que todo objeto conocido puede ser entendido como un sistema termodinámico), transformación en el curso de la cual se puede recibir o aportar energía (por ejemplo la utilizada para un trabajo mecánico). En este sentido la entalpía es numéricamente igual al calor intercambiado con el ambiente exterior al sistema en cuestión.
Usualmente la entalpía se mide, dentro del Sistema Internacional de Unidades, en joules.
El caso más típico de entalpía es la llamada entalpía termodinámica. De ésta, cabe distinguir la función de Gibbs, que se corresponde con la entalpía libre, mientras que la entalpía molar es aquella que representa un mol de la sustancia constituyente del sistema.

ENTROPIA

Es una magnitud física que, mediante cálculo, permite determinar la parte de laenergía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850;1 2 y Ludwig Boltzmann, quien encontró la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.

Bioenergética

BIOENERGÉTICA


Es la parte de la biología muy relacionada con la física, que se encarga del estudio de los procesos de absorción, transformación y entrega de energía en los sistemas biológicos.
En general, la Bioenergética se relaciona con la Termodinámica, en particular con el tema de la Energía Libre, en especial la Energía Libre de Gibbs.
Los cambios en la energía libre de Gibbs \Delta G nos dan una cuantificación de la factibilidad energética de una reacción química y pueden proveer de una predicción de si la reacción podrá suceder o no. Como una característica general de La Bioenergética, esta solo se interesa por los estados energéticos inicial y final de los componentes de una reacción química, los tiempos necesarios para que el cambio químico se lleve a cabo en general se desprecian. Un objetivo general de la Bioenergética, es predecir si ciertos procesos son posibles o no; en general, la cinética cuantifica qué tan rápido ocurre la reacción química.
REACCIÓN EXERGÓNICA

Es una reacción química donde la variación de la energía libre de Gibbs es negativa.1 Esto nos indica la dirección que la reacción seguirá. A temperatura y presión constantes una reacción exergónica se define con la condición:
\Delta G < 0
Que describe una reacción química que libera energía en forma de calor, luz, etc. Las reacciones exergónicas son una forma de procesos exergónicos en general o procesos espontáneos y son lo contrario de las reacciones endergónicas. Se dijo que las reacciones exergónicas transcurren espontáneamente pero esto no significa que la reacción transcurrirá sin ninguna limitación o problema. Por ejemplo la velocidad de reacción entre hidrógeno y oxigeno es muy lenta y no se observa en ausencia de un catalizador adecuado.
Las reacciones exergónicas liberan más energía de la que absorben; en ella, la formación de nuevos enlaces de los productos (en la reacción química) liberan una cantidad de energía mayor que la absorbida para romper los enlaces de los reactivos, de modo que el exceso queda libre conforme se lleva acabo la reacción. Por lo regular las reacciones catabólicas son exergónicas.
REACCIÓN ENDERGÓNICA

es una reacción química en donde el incremento de energía libre es positivo.
Bajo condiciones de temperatura y presión constantes, esto quiere decir que el incremento en la energía libre de Gibbs estándar debe ser positivo.
\Delta G^\circ > 0
Para una reacción en estado estándar (a una presión estándar (1 Bar), y unas concentraciones estándar (1 molar) de todos los reactivos y productos).

REACCION ANAPLEURÓTICA

son aquellas que proporcionan intermediarios del ciclo de los ácidos tricarboxílicos (TCA, del inglés) o ciclo del ácido cítrico o ciclo de Krebs. El malato se forma en el citosol de la célula por la acción de la fosfoenolpiruvato carboxilasa (PEP carboxilasa) y la malato deshidrogenasa, y una vez dentro de la matriz mitocondrial, puede ser empleado para obtener piruvato (reacción catalizada por la enzima málica) o ácido oxalacético. Ambos productos pueden entrar en el ciclo del ácido cítrico. Dado que se trata de un ciclo, la formación de cualquiera de sus intermediarios puede servir para rellenar el ciclo entero y mantener todos sus substratos al máximo. El término anaplerótico tiene su origen en el griego antiguo y significarellenar.
Hay cuatro reacciones clasificadas como anapleróticas, aunque la producción de oxalacetato a partir de piruvato es probablemente la más importante fisiológicamente.
Hay cuatro reacciones clasificadas como anapleróticas, aunque la producción de oxalacetato a partir de piruvato es probablemente la más importante fisiológicamente.
DesdeAReacciónNotas
Piruvatooxalacetatopiruvato + CO2 + H2O + ATP \longrightarrow oxalacetato + ADP + Pi + 2H+Esta reacción es catalizada por la piruvato carboxilasa, una enzima activada por Acetil-CoA, indicando una falta de oxalacetato.
El Piruvato puede también ser convertido en L-malato, otro intermediario, mediante una vía similar.
Aspartatooxalacetato-Esta reacción es reversible pudiendo formar oxalacetato a partir de aspartato en una reacción detransaminación, vía aspartato aminotransferasa.
Glutamatoα-cetoglutaratoglutamato + NAD+ + H2\longrightarrow NH4+ + α-cetoglutarato + NADH + H+.Esta reacción está catalizada por la glutamato deshidrogenasa.
β-oxidación deácidos grasossuccinil-CoA-Cuando se oxidan ácidos grasos de cadena impar, se forma una molécula de succinil-CoA por cada ácido graso. La enzima final es la metilmalonil-CoA mutasa.

Metabolismo



METABOLISMO


Es el conjunto de reacciones bioquímicas y procesos físico-químicos que ocurren en una célula y en el organismo. Estos complejos procesos interrelacionados son la base de la vida a escala molecular, y permiten las diversas actividades de las células: crecerreproducirse, mantener sus estructuras, responder a estímulos, etc.
  • El anabolismo, o metabolismo constructivo, consiste en fabricar y almacenar: es la base del crecimiento de nuevas células, el mantenimiento de los tejidos corporales y la creación de reservas de energía para uso futuro. Durante el anabolismo, moléculas simples y de tamaño reducido se modifican para construir moléculas de hidratos de carbono, proteínas y grasas más complejas y de mayor tamaño.
  • El catabolismo, o metabolismo destructivo, es el proceso mediante el cual se produce la energía necesaria para todas las actividades. En este proceso, las células descomponen moléculas de gran tamaño (mayoritariamente de hidratos de carbono y grasas) para obtener energía. La energía producida, aparte de ser el combustible necesario para los procesos anabólicos, permite calentar el cuerpo, moverlo y contraer los músculos. Cuando descomponen compuestos químicos en sustancias más simples, los productos de desecho liberados en el proceso son eliminados al exterior a través de la piel, los riñones, los pulmones y los intestinos.

Bimoléculas

BIOMOLÉCULAS (Componentes químicos de la Célula)

Una célula viva está constituida básicamente por cuatro elementos (C, H, O y N) los cuales combinados entre sí, dan origen a un gran número de compuestos. La sustancia más abundante en la célula viva es el agua y llega a representar más del 70% de su peso. Esta molécula es de gran importancia pues la mayor parte de las reacciones intracelulares se llevan a cabo en ambiente acuoso y todos los organismos se han diseñado alrededor de las propiedades del agua, tales como su carácter polar, su capacidad para formar enlaces de hidrógeno y su alta tensión superficial.
Si se deja de lado el agua, casi todas las moléculas en la célula son compuestos carbonados asociados a otros elementos, entre otros se consideran los carbohidratos, lípidos, proteínas y los ácidos nucleicos.

BIOMOLECULAS INORGANICAS

EL AGUA

Es el compuesto líquido más importante para los seres vivos. La cantidad de agua varía entre los diferentes organismos, así por ejemplo en las medusas el 95% de su estructura es agua, mientras que en los tejidos humanos el porcentaje de ese compuesto varía desde el 20% en los huesos, hasta el 85% en las células cerebrales. En los seres vivos el agua está en mayor proporción durante el desarrollo embrionario y en los estados juveniles; en el envejecimiento ella disminuye y esto se refleja en el deterioro de las diferentes actividades metabólicas.
El agua está formada por dos átomos de hidrógeno débilmente electronegativos unidos a un átomo de oxígeno fuertemente electronegativo (Figura 1); por tanto, la molécula de agua presenta una distribución interna asimétrica de carga que le confiere un carácter polar y cohesivo para formar enlaces de hidrógeno con otras moléculas polares, así como interactuar con iones cargados positiva o negativamente. Como resultado de estas interacciones, los iones y moléculas polares son fácilmente solubles en agua (hidrofílicos). Las moléculas de agua son fuertemente cohesivas debido a la presencia de puentes de hidrógeno entre ellas. Las fuerzas de adhesión explican por qué el agua moja las cosas. Además tiene un alto grado de tensión superficial debido a la cohesión de sus moléculas. Así las moléculas de agua de la superficie libre se agrupan, formando una fuerte capa por la atracción que ejercen sobre ellas otras moléculas de agua situadas por debajo. Por otra parte, las fuerzas de adhesión y cohesión explican la tendencia del agua a ascender por tubos de calibre muy pequeño, fenómeno que recibe el nombre de capilaridad.

SALES MINERALES



Las sales minerales son elementos químicos inorgánicos indispensables para la vida. Participan en procesos fundamentales para el funcionamiento y desarrollo del organismo.
Están presentes en diversos alimentos de consumo general, de manera natural o añadidos, como el yodo en la sal yodada y el flúor en el agua potable, que se incorporan para prevenir bocio y caries respectivamente.
Algunos de los minerales esenciales que una dieta balanceada debe proveer son: calcio (mayoritariamente en los productos lácteos), potasio (en frutas como el plátano y la palta, verduras, nueces y legumbres), hierro(presente en carnes rojas, huevo, pescado, legumbres y harinas fortificadas), magnesio (en vegetales de hoja verde y frutos secos) y fósforo (en productos de origen animal y cereales).
En el caso del sodio, el consumo actual supera toda recomendación: se aconseja reducir el consumo de sal, cuyo exceso se asocia a hipertensión y aumento del riesgo cardiovascular.

GAS


estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas intereaccionan solo débilmente entre sí, sin formar enlaces moleculares, adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse, esto es, expandirse, todo lo posible por su alta energía cinética. Los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:
  • Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven sus moléculas.
  • Los gases ocupan completamente el volumen del recipiente que los contiene.
  • Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
  • Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.
A temperatura y presión ambientales los gases pueden ser elementos como el hidrógeno, el oxígeno, el nitrógeno, el cloro, el flúor y los gases nobles, compuestos como el dióxido de carbono o el propano, o mezclas como el aire.
Los vapores y el plasma comparten propiedades con los gases y pueden formar mezclas homogéneas, por ejemplo vapor de agua y aire, en conjunto son conocidos como cuerpos gaseosos, estado gaseoso o fase gaseosa.

BIOMOLÉCULAS ORGÁNICAS

CARBOHIDRATOS

Son compuestos orgánicos que contienen carbono, hidrógeno y oxígeno, y muchos de ellos contienen estos elementos en la relación de Cn(H2O)n. Químicamente se definen como aldehídos o cetonas, dentro de ellos se clasifican los azúcares simples o monosacáridos en donde n es un número entero de 3 a 7. Si se unen dos monosacáridos forman un disacárido; si se unen de 3-20 monosacáridos resulta un oligosacárido y cuando se unen numerosas unidades de monosacáridos, constituyen un polisacárido como por ejemplo los almidones, celulosas, pectinas, quitinas, etc.
Los carbohidratos como los azúcares y los almidones generalmente se utilizan por los organismos como fuentes de energía; mientras que los otros como las celulosas, pectinas y quitinas tienen función estructural en células individuales y aún en organismos completos como hongos, plantas, bacterias artrópodos, etc. Además, algunos polisacáridos y polímeros más cortos de azucares actúan como marcadores para una variedad de procesos de reconocimiento en las células, incluyendo la adhesión de ellas con sus vecinas y el transporte de proteínas a los destinos intracelulares apropiados y otros hacen parte de sustancias celulares importantes como son los ácidos nucleicos y como cofactores que contienen vitaminas.
En cuanto a sus propiedades fisicoquímicas, los carbohidratos de peso molecular bajo son solubles en agua y tienen poder edulcorante (endulzante) alto, características que son opuestas en los carbohidratos de peso molecular alto en los cuales la solubilidad se reduce notablemente.

ESTRUCTURA DE LOS MONOSACÁRIDOS

Son los azúcares más simples, en su nombre incluyen la terminación osa. Si en su molécula contienen la función carbonilo ( - C=O ) en un carbón primario se denominan aldosas y si esa función está en un carbono secundario, se denominan cetosas.
No. CARBONOS
FUNCIÓN
3 CARBONOS
4 CARBONOS
5 CARBONOS
6 CARBONOS
ALDOSA
Aldotriosa
Aldotetrosa
Aldopentosa
Aldohexosa
CETOSA
Cetotriosa
Cetotetrosa
Cetopentosa
Cetohexosa

DISACÁRIDOS

Los monosacáridos, en especial la glucosa y sus derivados, tienen un lapso de vida muy corto dentro de la célula ya que la mayoría de ellos se degradan por hidrólisis para liberar su energía química utilizada en las diferentes reacciones celulares, o se unen mediante enlaces glucosídicos (C-O-C) por síntesis de deshidratación para formar disacáridos y polisacáridos. El enlace glucosídico se forma entre el hidroxilo ( este aporta un -H ) del carbono 1 del primer monosacárido con el -OH del carbono 2, 3 o 4 del segundo monosacárido formando una molécula de agua; los enlaces resultantes serán alfa (a ) o beta ( ß ) según la posición del -OH en el primer azúcar.

POLISACÁRIDOS

Son los carbohidratos más abundantes, son el resultado de la unión de más de 10 unidades de azúcares sencillos (generalmente la glucosa) mediante enlaces glucosídicos. entre otros se pueden citar el almidón y la celulosa (en plantas) y el glucógeno (en animales).


MUCOPOLISACÁRIDOS O GLUCOSAMINOGLUCANOS

Son polímeros de monosacáridos que poseen unidades de azúcares modificados como aminoazúcares, azúcares sulfatados, azúcares ácidos y N- acetil derivados. Las cadenas de carbohidratos de los glucosaminoglucanos existen como repeticiones de disacáridos en los cuales uno de los dos azúcares es siempre la N-acetilglucosamina o N-acetilgalactosamina. Todos los glucosaminoglucanos con excepción del ácido hialurónico tienen azúcares sulfatados, y la presencia de grandes cantidades de grupos carboxilo y sulfato hacen de estos polímeros moléculas fuertemente ácidas. La mayoría de estos compuestos se encuentran combinados con proteínas para formar proteoglucanos en la matriz extracelular, especialmente el heparan sulfato que está en estrecha asociación con el límite externo de la membrana plasmática.
Los glucosaminoglucanos son de aspecto amorfo, tan viscosos como las secreciones mucosas, entre los más comunes se pueden citar: el ácido hialurónico, el condroitín sulfato A, laheparina, el keratosulfato y el dermatán sulfato.
El ácido hialurónico es un mucopolisacárido ácido formado por la repetición de un disacárido formado por el ácido glucurónico y la N- acetil glucosamina, unidos entre sí por enlaces glucosídicos ß(1--› 3) y los disacáridos mediante enlaces ß(1--› 4). El ácido hialurónico se encuentra como componente principal de la sustancia fundamental del tejido conectivo, constituyendo el humor acuoso del ojo, el líquido sinovial y la gelatina de Wharton del cordón umbilical. Se hidrata fácilmente y de él dependen los cambios en la viscosidad y la permeabilidad de la sustancia fundamental del tejido conectivo, y por ello tiene influencia importante en el intercambio de material entre las células de los tejidos y el plasma sanguíneo. La enzima que hidroliza los enlaces del ácido hialurónico es la hialuronidasa presente en los espermatozoides para facilitar la entrada al óvulo y en los estafilococos para invadir el tejido conectivo. Ella reduce la viscosidad y con ello aumenta la permeabilidad del tejido.

LÍPIDOS

Los lípidos son un grupo amplio y heterogéneo de compuestos insolubles en agua, pero solubles en solventes orgánicos no polares como el éter, el cloroformo o el benceno. En su molécula ellos contienen carbono, hidrógeno y oxígeno, pero este último en menor proporción respecto al carbono y al hidrógeno que en los carbohidratos. En los organismos vivos cumplen diversas funciones como las que se citan a continuación:
  • son reservas energéticas y se utilizan como combustibles biológicos importantes, ya que pueden suministrar cerca de 9.3 Calorías por gramo ( una caloría con C mayúscula equivale a 1000 calorías; el termino Caloría se usa para medir el contenido energético de los alimentos), comparada con 4.1 Calorías de azúcares y proteínas
  • forman cubiertas aislantes en la superficie de plantas y de animales para evitar infecciones y mantener el equilibrio hídrico en ellos.
  • sirven como componentes estructurales de las membranas biológicas en donde contribuyen a la formación de compartimentos con respuestas bioquímicas específicas.
  • Constituyen sistemas aislantes contra choques térmicos, eléctricos y químicos a nivel de la hipodermis o en cubiertas de órganos internos.
  • otros pueden ser hormonas que participan en el control de procesos metabólicos
  • además sirven como precursores de otros compuestos complejos como lipoproteínas, glicoproteínas, vitaminas liposolubles etc.
Los lípidos se clasifican en tres grupos principales:
  1. LÍPIDOS SIMPLES que incluyen Grasas verdaderas saturadas (sólidas), aceites insaturados (líquidos) y ceras los cuales tienen estructura similar y en su molécula solamente poseen carbono, hidrógeno y oxígeno.
  2. LÍPIDOS COMPLEJOS comprenden los fosfolípidos o fosfoglicéridos, de estructura similar a las grasas pero además contienen fósforo y nitrógeno; los esfingolípidos(ceramidas, esfingomielinas, cerebrósidos y gangliósidos). A los cerebrosidos y gangliósidos también se les conoce como glicolípidos.
  3. LÍPIDOS DERIVADOS, incluyen los lípidos que no se clasifican en los anteriores grupos como la familia de los esteroidescarotenoides, las prostaglandinas y las vitaminas liposolubles.

ÁCIDOS NUCLEICOS

Los ácidos nucleicos, ADN (ácido desoxirribonucleico) y ARN (ácido desoxirribonucleico) son polímeros especializados en almacenar, transmitir y expresar la información genética en secuencias de aminoácidos, las cuales luego de algunos procesos conforman las proteínas de una célula.
El ADN fue descubierto como el principal constituyente químico del núcleo de células eucarióticas, en tiempos en los cuales Mendel y Darwin publicaron sus trabajos alrededor de la mitad del siglo XIX. Sin embargo, durante los años 1900s, las proteínas se consideraron como las mejores candidatas para almacenar la información hereditaria.
Friederick Miescher en 1869 en trabajos con glóbulos blancos obtenidos a partir de vendajes de pacientes con heridas infecciosas, realizó la primera extracción de los ácidos nucleicos. Su técnica se basó principalmente en lavar los vendajes que tenían secreciones producto de la infeccion con una solución salina, luego adicionó a este material que contenía principalmente un buen número de linfocitos, una solución alcalina que permitió que esas células se lisaran y el núcleo se precipitara en ella. La sustancia química que se encontró en estos núcleos, después de ciertos análisis la denominó nucleína y comprobó su presencia en otras células diferentes.