domingo, 25 de agosto de 2013

Enzimas

ENZIMAS

son moléculas de naturaleza proteica y estructural que catalizan reacciones químicas, siempre que sean termodinámicamente posibles: una enzima hace que una reacción química que es energéticamente posible (ver Energía libre de Gibbs), pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima.En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.

Estructura de la triosafosfato isomerasa. Conformación en forma de diagrama de cintas rodeado por el modelo de relleno de espacio de la proteína. Esta proteína es una eficiente enzima involucrada en el proceso de transformación deazúcares en energía en las células.

Son moléculas de naturaleza proteica y estructural que catalizan reacciones químicas, siempre que seantermodinámicamente posibles: una enzima hace que una reacción química que es energéticamente posible (ver Energía libre de Gibbs), pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima.2 3 En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.

CLASIFICACIÓN
  • OXIDORREDUCTASAS
Catalizan reacciones de oxidorreducción, es decir, transferencia de hidrógeno (H) 
o electrones (e-) de un sustrato a otro, según la reacción general:
AH2 + B
A + BH2
Ared + Box
Aox + Bred
Ejemplos son la succinato deshidrogenasa o la citocromo c oxidasa.











  • TRANSFERASAS
Catalizan la transferencia de un grupo químico (distinto del hidrógeno) de un sustrato a 
otro, según la reacción:
A-B + C
A + C-B
Un ejemplo es la glucoquinasa, que cataliza la reacción representada en la Figura de la 
derecha:
glucosa + ATP
ADP + glucosa-6-fosfato





  • HIDROLASAS
Catalizan las reacciones de hidrólisis:
A-B + H2O
AH + B-OH
Un ejemplo es la lactasa, que cataliza la reacción:
lactosa + agua
glucosa + galactosa




  • LIASAS

Catalizan reacciones de ruptura o soldadura de sustratos:
A-B
A + B
Un ejemplo es la acetacetato descarboxilasa, que cataliza la 
reacción:
ácido acetacético
CO2 + acetona

  • ISOMERASAS

Catalizan la interconversión de isómeros:
A
B
Son ejemplos la fosfotriosa isomerasa y la fosfoglucosa isomerasa, que catalizan las 
reacciones representadas en la tabla inferior:
fosfotriosa isomerasa
fosfoglucosa isomerasa
gliceraldehído-3-fosfato
dihidroxiacetona-
fosfato
glucosa-6-fosfato
fructosa-6-fosfato

CINÉTICA ENZIMÁTICA


Mecanismo para una reacción catalizada por una enzima con un único sustrato. La enzima (E) une un sustrato (S) y genera un producto (P).
La cinética enzimática es el estudio de cómo las enzimas se unen a sus sustratos y los transforman en productos. Los datos de equilibrios utilizados en los estudios cinéticos son obtenidos mediante ensayos enzimáticos.
En 1902, Victor Henri propuso una teoría cuantitativa sobre la cinética enzimática, pero sus datos experimentales no fueron muy útiles debido a que la importancia de la concentración del ion de hidrógeno aún no era considerada. Después de que Peter Lauritz Sørensendefiniera la escala logarítmica del pH e introdujera el concepto de "tampón" (buffer) en 1909, el químico alemán Leonor Michaelis y su postdoctoral canadiense Maud Leonora Menten repitieron los experimentos de Henri confirmando su ecuación, que actualmente es conocida como cinética de Henri-Michaelis-Menten (o simplemente cinética de Michaelis-Menten). Su trabajo fue desarrollado más en profundidad por George Edward Briggs y J. B. S. Haldane, quienes obtuvieron las ecuaciones cinéticas que se encuentran tan ampliamente extendidas en la actualidad.
La mayor contribución de Henri fue la idea de dividir las reacciones enzimáticas en dos etapas. En la primera, el sustrato se une reversiblemente a la enzima, formando el complejo enzima-sustrato (también denominado complejo Michaelis). En la segunda, la enzima cataliza la reacción y libera el producto.

Curva de saturación de una reacción enzimática donde se muestra la relación entre la concentración de sustrato y la velocidad de la reacción.
Las enzimas pueden catalizar hasta varios millones de reacciones por segundo. Por ejemplo, la descarboxilación no enzimática de laorotidina 5'-monofosfato tiene una vida media de 78 millones de años. Sin embargo, cuando la enzima orotidina 5'-fosfato descarboxilasaestá presente en el medio, ese mismo proceso tarda apenas 25 milisegundos. Las velocidades de las enzimas dependen de las condiciones de la solución y de la concentración de sustrato. Aquellas condiciones que desnaturalizan una proteína, como temperaturas elevadas, pHs extremos o altas concentraciones de sal, dificultan o impiden la actividad enzimática, mientras que elevadas concentraciones de sustrato tienden a incrementar la actividad. Para encontrar la máxima velocidad de una reacción enzimática, la concentración de sustrato se incrementa hasta que se obtiene una tasa constante de formación de producto (véase la curva de saturación representada en la figura de la derecha). La saturación ocurre porque, cuando la concentración de sustrato aumenta, disminuye la concentración de enzima libre, que se convierte en la forma con sustrato unido (ES). A la máxima velocidad (Vmax) de la enzima, todos los sitios activos de dicha enzima tienen sustrato unido, y la cantidad de complejos ES es igual a la cantidad total de enzima. Sin embargo, Vmax es sólo una de las constantes cinéticas de la enzima. La cantidad de sustrato necesario para obtener una determinada velocidad de reacción también es importante. Este parámetro viene dado por la constante de Michaelis-Menten (Km), que viene a ser la concentración de sustrato necesaria para que una enzima alcance la mitad de su velocidad máxima. Cada enzima tiene un valor de Km característico para un determinado sustrato, el cual puede decirnos cómo de afín es la unión entre el sustrato y la enzima. Otra constante útil es kcat, que es el número de moléculas de sustrato procesadas por cada sitio activo por segundo.
La eficiencia de una enzima puede ser expresada en términos de kcat/Km, en lo que se denomina constante de especificidad, que incorpora la constante de velocidad de todas las fases de la reacción. Debido a que la constante de especificidad contempla tanto la afinidad como la capacidad catalítica, es un parámetro muy útil para comparar diferentes enzimas o la misma enzima con diferentes sustratos. El valor máximo teórico de la constante de especificidad es denominado límite de difusión tiene un valor de 108-109 (M-1 s-1). Llegados a este punto, cada colisión de la enzima con su sustrato da lugar a la catálisis, con lo que la velocidad de formación de producto no se ve limitada por la velocidad de reacción, sino por la velocidad de difusión. Las enzimas que poseen esta propiedad son llamadas enzimas catalíticamente perfectas o cinéticamente perfectas. Ejemplos de este tipo de enzimas son la triosa fosfato isomerasa, la anhidrasa carbónica, la acetilcolinesterasa, la catalasa, la fumarasa, la beta-lactamasa y la superóxido dismutasa.
La cinética de Michaelis-Menten depende de la ley de acción de masas, que se deriva partiendo de los supuestos de difusión libre y colisión al azar. Sin embargo, muchos procesos bioquímicos o celulares se desvían significativamente de estas condiciones, a causa de fenómenos como el crowding macromolecular, la separación de etapas entre enzima-sustrato-producto, o los movimientos moleculares uni- o bidimensionales.No obstante, en estas situaciones se puede aplicar una cinética de Michaelis-Menten fractal.
Algunas enzimas presentan una cinética más rápida que la velocidad de difusión, lo que en principio parecería ser imposible. Se han propuesto diversos mecanismos para tratar de explicar este fenómeno. Uno de los modelos propone que algunas proteínas podrían tener la capacidad de acelerar la catálisis secuestrando el sustrato y orientándolo mediante campos eléctricos dipolares. Otro modelo propone un mecanismo de efecto túnel cuántico, donde un protón o un electrón pueden formar un túnel a través de barreras de activación, aunque existe cierta controversia en cuanto al efecto túnel que pueda generar un protón. El efecto túnel mediado por protones ha sido observado en triptamina.Esto sugiere que la catálisis enzimática podría ser definida más exactamente como una "barrera", en lugar de como hace el modelo tradicional, donde el sustrato requiere a la enzima para alcanzar una barrera energética más baja.

No hay comentarios:

Publicar un comentario